
ctrlX CORE: REST API

Insights - ctrlX AUTOMATION: Engineering

August 2020

ctrlX CORE: REST API Bosch Rexroth AG

ctrlX CORE

Data Layer

The ctrlX Data Layer forms the backbone of ctrlX CORE. The Data Layer, the control’s data interface,
includes data and other functionality which may be consumed or modified by a suitably qualified client.

In this article we give a brief overview of some of the data that is available in the ctrlX Data Layer and how it
may be accessed. As we shall see, the underlying mechanism is such that apps, whether running onboard
the control, on a smart phone, on an external PC or in the cloud, can interface with the Data Layer using
the same general approach.

When an app is installed on ctrlX CORE, it may publish data (or, more generally, expose functionality) to
the Data Layer. Such data appears as a clearly identifiable node within the Data Layer tree. For example,
with the PLC and MOTION apps installed, the Data Layer looks like this:

Figure 1: The Data Layer tree as it appears in the ctrlX CORE web interface. Nodes + motion and + plc are directly
associated with the MOTION and PLC apps resp. and will only appear once these apps are installed.

All data or functionality exposed by a given app is available within the associated node. For example, under
+ motion, we find a listing of all configured axes together with critical data, including diagnostic information,
command and actual position values and operation state.

Page 2 of 10

ctrlX CORE: REST API Bosch Rexroth AG

API

An application programming interface, or API, is a set of rules or methods that define how external applica-
tions may interact with the application itself. We often think of the original application as the server and the
external applications as clients and for simplicity we’ll adopt this language here.

The API defines what data may be accessed, whether it may be modified, etc. and how each of these
operations is performed. In other words, it defines the set of requests that may be made by the client and
how to make them. We often blur the API, the abstract definition of this functionality, with the library that
implements the API; in most cases this doesn’t create too much trouble or confusion.

An example of an API, now well known to the Rexroth community, is the Open Core Interface. Through this
interface, software clients built on a various platforms - Windows, LabVIEW, Matlab, iOS, Android, etc. -
can access data or other functionality on IndraMotion controls or drives.

Ebay API

Ebay, the well-known auctioning website, introduced its API in 2000. Prior to this point, all Ebay transactions
occurred directly on Ebay’s website. The API allowed developers to build custom, narrowly-focused auctions
on third-party websites or applications, providing a better user experience. At the time, the Wall Street
Journal wrote1:

Having captured most of the Internet auction market with its own site, eBay Inc. has a new goal: to
become an ”operating system” for e-commerce on the Web.

For the past six months, the company has been developing technology that will let Web companies
display eBay auctions – whether listings for baseball cards, stamps or automobiles – on their own
independent sites, which could greatly expand the visibility of eBay auctions among potential buyers.

Ebay was an early adopter of a special kind of API, now commonplace on the Web, called REST. A REST
API, meaning a programming interface that follows the REST design pattern, exposes a set of resources via
a fixed set of resource methods. The REST design pattern also constrains the interface in ways that promote
uniformity and clarify the roles of client and server. The details are beyond our scope here, but suffice it to
say, the ubiquitous adoption of the REST design pattern has imposed on Web services a common workflow
or look and feel.

A typical REST API roughly follows the pattern shown in Figure 2. Resources are represented by Uniform
Resource Identifiers (URI) within the server of the form https://host/path/query and the resource methods
are request types associated with the HTTP protocol: GET, PUSH, PUT, DELETE, etc. Note that the client
always makes requests for data access or modifications and that the server may deny these requests based
on various conditions, including lack of credentials or current server state.

1https://www.wsj.com/articles/SB974675427606513763

Page 3 of 10

ctrlX CORE: REST API Bosch Rexroth AG

Figure 2: Typical REST API workflow: Client issues request for data associated to a defined resource (URI). If properly
authenticated, server responds with requested data. Note that other request types (e.g. PUSH, PUT) may require
additional data in a request body.

Like Ebay, Twitter also has an API, part of which is RESTful. For example, using Twitter’s REST API, third
parties can search the Twitter database by user or by hash.

To give a concrete example, making a GET request to https://api.twitter.com/1.1/search/tweets.json?q=from
%3Aboschrexrothus, allows us to access the most recent tweets sent by @BoschRexrothUS.

Figure 3: Using the Twitter API, clients may access the recent activity of a specific user. Note that additional authenti-
cation information must be supplied in the request header. The REST client shown on the left is Postman.

Page 4 of 10

ctrlX CORE: REST API Bosch Rexroth AG

Similarly, we can post to Twitter (i.e. ”tweet”) using a POST request:

Figure 4: The Twitter API also allows clients to tweet to associated user accounts using a POST request. (@twitterUser
is not a real user.)

It is worth noting that, in both cases, successful requests to the Twitter API require proper authorization2.
Access to specific resources is given only to qualified users.

2For an overview of the Authorization requirements, see Twitter’s development site: https://developer.twitter.com/en/docs/basics/authentication

Page 5 of 10

ctrlX CORE: REST API Bosch Rexroth AG

Examples

In a similar vein, ctrlX CORE includes a REST API, allowing qualified users to access the Data Layer. To
give a flavor for the type of information or functionality that can be accessed, we list some simple examples.
Throughout, 192.168.1.1 is the IP address of the ctrlX CORE control.

1. To get a listing of the main items in the Data Layer, issue a GET request to /automation/api/v1.0/?type=browse.
Compare the array labeled ”value” below to the tree shown in Figure 1.

Request

GET
https://192.168.1.1/automation/api/v1.0/?type=browse

Response (body)

{
"type": "arstring",
"value": [

"axisprofile",
"datalayer",
"devices",
"diagnosis",
"framework",
"motion",
"plc",
"scheduler",
"script",
"trace",
"types"

]
}

2. For general system information, issue a GET request to /systeminfo/api/v1.0/systeminfo.

Request

GET
https://192.168.1.1/systeminfo/api/v1.0/systeminfo

Response (body)

{
"Hostname": "VirtualControl-1", "IpAddress": "192.168.1.1",
"OperatingSystem": "Ubuntu Core 18", "Architecture": "amd64",
"MACAddress": "de:ad:be:00:00:01"

}

Page 6 of 10

ctrlX CORE: REST API Bosch Rexroth AG

3. To read the current values of an axis configured on the control (here Axis 1), issue a GET request to
/automation/api/v1.0/motion/axs/Axis 1/state/values/actual.

Request

GET
https://192.168.1.1/automation/api/v1.0/motion/axs/Axis_1/state/values/actual

Response (body)

{
"actualPos": 452.814999999993,
"actualVel": 0.0,
"actualAcc": 0.0,
"actualTorque": 0.0,
"distLeft": 0.0
}

4. The REST API also allows us to change the control’s state. For example, we may reset the axis above
by issuing a POST request to /automation/api/v1.0/motion/axs/Axis 1/cmd/reset. (The response body is
empty in this case.)

Request

POST
https://192.168.1.1/automation/api/v1.0/motion/axs/Axis_1/cmd/reset

Response (body)

empty

5. Assuming the control is not in its Running state, we can also add or delete Axes. To add Axis 3, for
example, issue a POST request to /automation/api/v1.0/motion/axs with the request body shown below.

Request

POST
https://192.168.1.1/automation/api/v1.0/motion/axs

Request (body)

{"type":"string","value":"Axis_3"}

Page 7 of 10

ctrlX CORE: REST API Bosch Rexroth AG

6. To delete this axis, issue a DELETE request to /automation/api/v1.0/motion/axs/Axis 3.

Request

DELETE
https://192.168.1.1/automation/api/v1.0/motion/axs/Axis_3

Response (body)

empty

7. Finally, to read a PLC variable, dTest, declared in program PLC PRG (and included in the symbol file),
issue a GET request to /api/v1.0/plc/app/Application/sym/PLC PRG/dTest.

Request

GET
https://192.168.1.1/automation/api/v1.0/plc/app/Application/sym/PLC_PRG/dTest

Response (body)

{
"type": "int32",
"value": 332

}

8. To write to this same variable, issue a PUT request to the same URI with a suitably configured request
body.

Request

PUT
https://192.168.1.1/automation/api/v1.0/plc/app/Application/sym/PLC_PRG/dTest

Request (body)

{
"type": "int32",
"value": 333

}

Page 8 of 10

ctrlX CORE: REST API Bosch Rexroth AG

As in the case of the Twitter, successful requests to the ctrlX REST API require strict authorization. All of
the requests described previously require an authorization token. To obtain one, submit a POST request to
the internal identity manager with configured username and password as shown below.

Request

POST
https://192.168.1.1/identity-manager/api/v1.0/auth/token

Request (body)

{
"name": "username",
"password": "*********"

}

Upon success the requester is issued a bearer token which should be added to the header of all subsequent
API requests.

Reply (body)

{
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1OTU5NjgwODcsIm
lhdCI6MTU5NTkzOTI4NywiaWQiOiIxMDAxIiwibmFtZSI6ImJvc2NocmV4cm90aCIsIm5vbmNlIjoiM
TI2MTdlMzgtODI5OS00ZmFkLTk0M2QtOWU5YjY1ZGI5YjYyIiwicGxjaGFuZGxlIjoxLCJzY29wZSI6
WyJyZXhyb3RoLWRldmljZS5hbGwucnd4Il19.GmHc4RIGMDfkY2d4Ws2X4zWmBanqlUq77mhcXlzdhW
vfNsYP0Q3g_DS1rc3U8KGyz4DCpl1W3iIzOpLsfNZykPwJ5MEJv45nEmAYms8SVPJAdIXVFfr_vB4jK
ehdxocANwuonIWGX_PpOWcwDs7HyzJZQy5nMNlEXj8z-5e5UOd2Peo6q_vZLf6OnoM7V8FmkWFNmeSr
Q6mEFvhJkcUDybgsFpLIyOhAR0kvfUu3d94r3UUJSp3L8k86a36tQcWsP8mB1_E0XMMxNYEss4ERtsW
ab8j4rihEpfhAujaX8ELeNgLdlPdy4eoiz_ikU6Uoa24CblzL8t0tChOQPTu33VduiLqavGlRv9qnPm
oZGj5ljy6CoZGQtwTwUlCCVRUuTzWFLcOhHNLEegKrMQeDmc8wscWsGwEewGHiepdWQzVJ7pLS8l3VX
l2ULscqTD_h4fLRhOawHbcptmREpkyMCUc3S5FNmXEjEfecp7KmVCvsOUI_ITP9ocW1eCa49KRmnrbt
fgp5soiSLy7yfrD5dOhjEPp9Gw42jWMZTF9WkFQGV8uO9GFUIZ24mCv17BV5wPsQZGaxHPFmGxldcGQ
RSEHsiDGv0OxAvqWOJ7WhmEpwLfhWkRkVEtth40CfiBJxuGHOmspjtcyOnQP2pfpiR1zOu9QsW8-i0-
xQ6Y",
"token_type": "Bearer"

}

Finally we note that ctrlX CORE also allows administrators to restrict user access to the Data Layer in a
granular way, meaning that a particular user may be granted access to only a limited part of the API.

Page 9 of 10

ctrlX CORE: REST API Bosch Rexroth AG

Why REST?

Virtually all modern programming languages support functionality that allow users to access a Web server
via its REST API. The table below lists some of the most popular programming languages3, all of which
support, either natively or through third-party resources, the required functionality.

Language HTTP client support Library, module or resource

JavaScript Y Fetch, Axios, ...

Python Y Lib/http.client.py

Java Y OpenJDK: HttpClient

PHP Y Guzzle, Httpful, Requests, ...

C# Y System.Net.Http: HttpClient

C/C++ Y libcurl, Beast (Boost), ...

TypeScript Y Fetch, Axios, ...

Ruby Y net/http (standard), Faraday, Curb, ...

The ctrlX CORE REST API thus gives programmers broad freedom in choice of language when configuring
the non-realtime functionality of the control or consuming data published by the Data Layer. By building
the ctrlX CORE’s programming interface on standardized web technologies with near universal support,
Rexroth has created an automation platform well positioned to play an integral role in the Factory of the
Future.

Michael Schaefer (DC-AE) provides a short introduction to the ctrlX CORE REST API, including configura-
tion of the request header, in a tutorial video found here:

https://e.video-cdn.net/video?video-id=EKqFyBxSHZKiPfJti4W1w9&player-id=B2xD9x5D-UTrfT84ZR61rZ

We will preview the ctrlX CORE realtime API in a future issue of the ctrlX eNewsletter.

Carl Bostrom
Application Engineering (DCNA/SAE22-US)

3See, for example, https://octoverse.github.com/

Page 10 of 10

